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Abstract--The model proposed in Part I lint. J. Multiphase Flow 12, 559-573 (1986)] for bubbly flows 
is extended to include the effect of velocity distributions around bubbles and the Riemann invariants are 
calculated to demonstrate that the void fraction is the conserved quantity that propagates along the faster 
characteristics. It is shown that kinematic wave velocities based on a constant interfacial friction coefficient 
propagate with velocities close to but slightly greater than that for the faster characteristic and are weakly 
unstable. Neutral stability of kinematic waves is found to imply a form of the interfacial friction coefficient 
in remarkable agreement with experiment. Wall friction has a negligible effect on these results for the usual 
range of parameters. Bubble interactions as described by a bubble-in-cell model do not affect the results 
up to a void fraction of 0.1. Beyond these void fractions the cell model predicts significant effects but 
experimental data suggest that the effects may be overestimated, Turbulence is shown to provide axial 
dispersion of void fraction which stabilizes the system of bubbly flow equations. 

1. I N T R O D U C T I O N  

In Part  I o f  this series (Pauchon & Banerjee 1986), void propaga t ion  was studied within the 
f ramework  o f  the multifield model.  [For  discussion o f  the general model,  see Delhaye (1968), Ishii 
0975) ,  Yadigaroglu  & Lahey (1976), Banerjee & C h a n  (1980) and Drew 0983) ,  amongst  many  
others.] Pauchon  & Banerjee (1986) showed that  experimental da ta  on void propaga t ion  were 
reasonably well predicted by the faster characteristic velocity if care was taken to model  interphase 
pressure interactions, which lead to the virtual mass term and a term involving the spatial gradient  
o f  the void fraction. As discussed later, if there are no pressure variations over the interface then 
the virtual mass effect and /or  form drag are absent. These terms have impor tan t  effects on the 
mathematical  structure o f  the system and, in particular, on the characteristic velocities [see also 
Ramshaw & Trapp  (1978), Drew 0983)  and Jones & Prosperetti  (1985)]. 

Interesting issues left unresolved but arising f rom Part  I are the role o f  kinematic waves in void 
propaga t ion  and the relationship between kinematic waves and the characteristics. These are the 
main problems tackled in this paper,  with some addit ional at tention being paid to extension o f  the 
work  in Part  I, to include the effects o f  velocity distribution a round  bubbles and bubble 
interactions. In  addit ion the effect o f  turbulence on void propaga t ion  is considered. 

In the following sections, we will first recapitulate the space/ensemble (or time) averaged 
multifield formulat ion and extend the results o f  Par t  I to include velocity distributions a round  
bubbles. The characteristics will be derived together with the Riemann invariants to demonst ra te  
that  the void fraction is indeed the conserved quant i ty  propagat ing  along the faster characteristic. 
This will be followed by considerat ion o f  kinematic waves and their stabil i ty--first  assuming 
constant  interfacial drag. The relationship between characteristics and kinematic waves to ensure 
stability will then be examined and the implications on the form of  the interfacial drag relationship 
elucidated. Finally, the effects o f  bubble interactions and turbulence will be discussed. 
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2. THE M U L T I F I E L D  MODEL FOR BUBBLY FLOW 

2. I. The linear momentum equation and closure relationships 

The linear momentum equation for field k has been derived by Banerjee & Chan (1980), among 
others, as 

~___p: a <n,. (*k" n,)> ~ Ek<pkUk> + ~Ek<pkU~> + Ek OZ 

~Ek 
= Ap~-:-'- + (EkPkFk> -- <mkUk>i- <nk'n~Ap~>i+ <nk'n~'zk>i + <nk~'n~'~k>w, [1] 

tTz 

where 

and 

( A )  = ~ A dv 
k 

1 fa f kdS  ' < f ' > '  = , 

Ek is the volume fraction of  field k in the volume V, nk is the outward drawn normal on the surface 
of  field k, n~ is the unit vector in the z-direction, a~ is the interfacial area of  field k and a n  the area 
of  contact between field k and the wall. (See also figure 1 in which the symbols are defined.) The 
other variables are: Pk, the density; uk, the velocity in the z-direction; Pk, the pressure; ~:k, the shear 
stress tensor; Fk, the body force; and rhk, the mass transfer out of  field k. Several interesting aspects 
are apparent in [1]. The pressure at the interface p~ has been broken into a part that varies over 
the interface and parts that do not: 

with 

Pz = <Pk > + Apki + Ap'~ 

V 
Apki = " ( P ~  > i -  (Pk>, ai 

[21 

which does not vary over a i in V, and 

V 
A p k i  = P k i  - -  - -  < P k i > i .  

ai 

Note that <Pki >i is dimensionally not a pressure since it is the pressure over all the interface per 
unit volume. Apki is the difference between the average pressure at the interface within phase k and 
the average pressure in field k. Pauchon & Banerjee (1986) showed that for bubbly flows this results 
in a term involving a spatial gradient of  void fraction, which has a significant effect on the nature 

1 
dZ 1 

n,l 

--. r l ~  

a i(z,t) aKl(Z,t) 

a K2 (z,t) 

---~ nk~t 

~'akw(z,t) 

Figure 1. Schematic of two-phase flow defining the symbols. 
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of the characteristics. Based on potential flow theory around a sphere of constant radius, it was 
established that 

ApLi= - -~PL((UG--  UL)>2' ~ --1,  [3] 

while mpG i -m--0. Another important term is (nk'n:Ap~)i,  which is the force per unit volume in the 
z-direction, due to pressure variations over a~. For accelerating flows, this term is significant even 
if the phases are considered inviscid. The term is generally written as the product of the dispersed 
phase volume fraction (here the gas)x the continuous phase density (here the l iquid)x the 
so-called virtual mass acceleration. In the limit of a single infinitesimal sphere, Voinov (1973) 
established that 

/Do uo 
(nk 'nzAp 'k i ) i  = "l" ~GPLCvM | b-7 k 

where 

DLUL'~ 1 
Dt ] '  CVM = ~, [4] 

Dk C3 d 
D t  -- dt + Uk -~Z" 

Note that Ruggles et  al. (1986) showed that CVM ~ 1/2, on the basis of experiment, for ~ ~< 0.15 
and rises relatively slowly at higher values. 

Distribution effects around a single bubble can also be taken into account using potential flow 
theory. They arise from the fact that in the liquid phase 

( u [ )  ~ (UL) 2 

Hence, the second term on the 1.h.s. of [1] has to be broken up into 

,2 ( U [ )  = (UL)2 "[ - (U L ) ,  

where u[ is the local perturbation to the volume-averaged liquid velocity due to the presence of 
a single sphere. Biesheuvel & van Wijngaarden (1984) showed that 

( U ' L 2 ) = k E G ( ( U o - - U L ) )  2 with k ' ' !  =5- [51 

Finally, interfacial and wall shear stress can be modelled in the usual way: 

and 

(nk'*:)i = EGPL~ ((uo - UL)) 2 

(n~'~:)i = EkPL-~ (uk) 2, 

[6] 

[7] 

where distribution effects are buried in £ and fw but can be made explicit if necessary through 
distribution coefficients. Note of course that f~ can be a function of uG - UL. D is a length scale 
chosen as the pipe diameter,£ andfw are friction coefficients. H e r e f  is related to the drag coefficient 
Co by 

3 D 
fi = ~ CD ~ ,  [8] 

where R is average bubble radius. 
Considering no interphase mass transfer and neglecting axial stress (%z,k), all closure re- 

lationships needed for [3] can then be specified to the level of the approximations discussed (i.e. 
no bubble interactions are considered for the pressure interaction terms but may be captured to 
some extent in f~ and fw). 
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2.2. Assumptions and simplified form 
To proceed, the system of bubbly flow equations is simplified while retaining the essence of the 

problem, assuming that 

- - the  two phases are incompressible 
--gas inertia is negligible 
- - the  average gas pressure is equal to the average interfacial pressure and the bubbles 

are large enough that surface tension forces are small (though these can be 
incorporated quite easily in the model) 

--bubble interactions are negligible 
- - the  two phases are flowing cocurrently with (UG -- UL) > 0 and (UL) > 0 at all 

times 
- - the  bubbles remain spherical. 

In the following, the averaging signs will be dropped but it is understood that all variables are 
averaged. A system of six equations are needed in the six unknowns %, EL, UG, UL, PG and PL. The 
first three are 

&G &G t~UG 
t3---~ + UG ~-Z + Ec ~ = 0 [9a] 

~E L ~E L t~U L 
c3-t- + UL ~-Z + EL 0--'~-- = 0 [9b] 

and 

EG -'1- EL = 1. 

From [1]-[7] it follows that the two momentum equations are 

OPG = -- PLE f I/DGUG 
Oz °-D (Uo-- UL)2--EopL CvM~,, D-; E G  

D L u L t~ 2 aPL 2 t~EL 
EL PL ~ + ~ P L kE° EL (U° -- UL) + EL ~ = -- OL (U° -- UL) -~Z 

f .~ /Douo 
+ EGPL ~ ( u o - U L ) 2 +  EOPL~vM~ b5 

with the additional relationship, from [3], 

[9c] 

o,__uL  
Dt ] [9d] 

_ _ _  E L P L g  

DLUL'~  E f2  2 
b5 } - [9el 

PG - -  PL = PLi - -  PL = - -  ~PL (UG - -  UL)2 

(this neglects surface tension); and 

=¼, 

[9f] 

in the limit that there are no bubble interactions. By substituting the two relationships [9c] and 
[9f] into the four conservation equations, the system is reduced to four equations with four 
unknowns: EG, UG, UL, PL. Moreover, assumption of incompressibility of both phases reduces the 
dimension of the system to 2, corresponding to the fact that the two pressure wave characteristics 
propagate at infinite velocities. 

In terms of UL and EL, the model equations in their most condensed form can be written in 
nondimensional form, neglecting for the moment wall friction, as 

and 

~E L (~ELU L 
+ - -  = 0  [10a] 

t~t 0z 

OUL OUL ( v  v2) E~[f(uO_UL)Z_ELFr], O----t +--~-z [UL+2Vj(UG--UL)]+~Z (Uo--UL)2 XEL ~L = [10b] 
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where u ~ -  u L can be replaced by 

i UL 
uG - -  UL = 1 - -  E L J0 ~-- EL UL "~- EG UG" 

For a stationary flow problem, J0 is the constant volumetric flux and 

and 

( G M  - ¢ - k E ~ )  2 
y~___E 2 

EG EL + CVM 

(CvM -- ~ -- keG) 
V ~(Z  L 

E G E L "-t- CVM 

'1~ ~--. EG EL "Jr CVM 

+ eGeL(¢ + k -  CVM)+ 2 ¢ 2 ( ~ - - - ~ ) ,  

Fr = gD 
( u o  - UL) 2" 

The variables in [10a,b] have been nondimensionalized with (Uc,0 - UL0) as a velocity scale and D 
as a length scale. The index 0 indicates a time- (or ensemble-) averaged value of  the variable. 

3. C H A R A C T E R I S T I C S  AND K I N E M A T I C  WAVES 

The characteristic velocities can be obtained from the derivative terms in [10a,b]. They represent 
the fastest and slowest wave velocities propagating in the system (Whitham 1974). The quantities 
conserved along these characteristics are the Riemann invariants which will be determined 
analytically as functions of  (x L and UL. The nature of the conserved quantities that propagate at 
the characteristic speeds will then be clarified. 

On the other hand, it is expected that density or void fraction propagates at the kinematic wave 
velocity which depends exclusively on the algebraic terms. These waves are stable if their speed is 
in between the two characteristic velocities [see also Whitham (1974)]. In the following, we assume 
that the two dominant algebraic terms are due to interfacial drag and gravity (or buoyancy). The 
effect of wall drag will be analyzed in a second step together with discussion of bubble interactions. 

3.1. Characteristic velocities and Riemann invariants 

Omitting algebraic terms, [10a,b] may be case in the form 

3U t~U 
a--~- + A-~-z = 0 

where U is the vector of dependent variables (EL, UL) T. The eigenvalues of the matrix A are the 
characteristic velocities 2 ± given in figure 2 as a function of Ec,0 in terms of the normalized quantity 

2,_+ 2 ± --UL /~_ -- - -  - -  v + . [ 1  1 ]  
U G - -  U L 

From [10a,b] and [11] the model is seen to be hyperbolic for CVM = k = ~ = 0. This is as expected, 
since gas phase inertia has been neglected. It is apparent from the value of  v that the virtual mass 
force (CvM) tends to make the characteristic complex and the system [10a,b] nonhyperbolic. From 
a physical viewpoint, the destabilizing effect of  the virtual mass effect arises because a change in 
velocity leads to ~ 3 times as large a change in gas velocity. Consequently, when a region suffers 
a small increase in void' fraction, the liquid velocity increases with a consequent larger increase in 
gas velocity which leads to gas flowing into the region and further increases the void fraction. The 
reverse is true of  the phasic pressure difference coefficient (~) and the velocity distribution 
coefficient (k), which are stabilizing. The quantities propagating at the characteristic velocities are 
the Riemann invariants J±,  which can be derived analytically for two-dimensional systems. For  
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a detailed account of  their derivation and significance see Whitham (1974). In the case under 
consideration, 

= dEL + [12a] 
J EGEL JJo -- ?2L 

and 

J -  = dE L + . [12b] 
EGEL J J0 -- UL 

Notice that Jo is a constant and that 

2 * -  = v  - ~ 0  

over a wide range of void fraction (see the bot tom curve in figure 2), so that 

J+  ~ - I n  (J0 - UL) = --In ec(uc -- UL)- 

Note that uG - Ue is in nondimensional form with Uc~ - UL0 as the nondimensionalizing scale. As 
the perturbations are small (uc - UL) ~ 1.0, SO J+  ~ In Ec. Thus, the conserved quantity along 2 * + 
is closely approximated by EG. 

3.2. Stability o f  kinematic waves 

The previous section indicates that the void fraction propagates along the faster characteristic. 
On the other hand, it is known [see Wallis (1969)] that the void fraction also propagates at the 
kinematic wave velocity. This is now evaluated as a function of  EL and UL. In order to do this, 
consider algebraic terms of  the model system [10a,b] in a frame of  reference fixed with the 
undisturbed liquid and obtain, after linearization: 

DL0 E_______LL 
"{- EL0 - ~  = 0 [13a] 

Dt  O2 
and 

DL0UL ~EL ( V0 V0 2x ) ~ L  
Dt + - ~ z  ¢0e-L0 EL0/ + ~ (2Vo)=EGO[2fo(UG--UL)--ELFro]'~O [13b] 

where the subscript 0 again denotes the unperturbed (stationary) quantities. The kinematic 
approximation assumes that continuity [13a] is satisfied while r0 and Vo are small and momentum 

effects reduce to a force balance among the algebraic terms. The wave motion is then governed 

by 

?~- "~ EL0 ~-Z = 0 [14a] 

and 

2fi 0 (U G -- b/L ) -- E L Fro = 0, [ 14b] 

and by the condition jo = eGuo + £LUL, which leads to 

Ec, o(Uo - UL) + UL + EC = 0. [14C] 

Constant interracial drag. Consider first that i f f  is not a function of the void fraction, then [14a-c] 

may be written as 

~E L [ Fro ~ 3EL 
--~- -q- ~EL0-  ~--i0 EGOEL0)-~-Z-Z = 0 .  [15] 

Clearly, at steady state 

(Uc, o - UL0)2f0 = EL0 Fro, [ 16] 
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f rom which it immediately follows that 

Fr  o 1 

f i o  £LO 

Thus the kinematic wave velocity a* in a frame of  reference fixed with the liquid is 

a~' = a0 - UL0 1 3 [17] 
- -  = - - ~ E G O .  
/'/GO -- UL0 

For  the case of  constant interfacial drag, figure 3 shows that a* lies above the faster characteristic 
velocity ;to* but close to it. This result is of  importance in determining the linear stability of  
kinematic waves. As we will now show, kinematic waves traveling faster than 2 *+ are weakly 
unstable. 

Going back to the linearized model [13a,b], we differentiate [13a] with respect to t and [13b] with 
respect to z and combine to obtain a single equation in terms of  ~L: 

% ~ + v0 ~z EL -- V0 COZ---- T = -- 2f0 --~ + a* Oz l" [18] 

In [18] the term containing v0 is diffusive, and the separate effects of  virtual mass force, pressure 
difference and velocity distribution around bubbles have already been discussed. We now look at 
the condition for linear stability of  the system. Equation [18] indicates that the global wave motion 
described on the r.h.s, behaves as 

so that 

E L = f ( z  -- a* t), 

0 0 ~-~ ~ - a ~ .  

1.00 

0.75 

Z *  
0.50 

0.25 

! 

0'1 0'.2 0'3 0'4 
EG 

Figure 2. Normalized characteristic speeds as a function of  
~a. The model has complex characteristics for ~o > 0.42. 

~= = (~. - -  g/L)/(UG - -  UL). 

l 

, \ ~  , -g~K,~.m=icw,v. 

v . ,~ ,  ~.x,. 4 o,"x,,  

o JL-31.8 cm/s 
~' JL-16.9 cm/s 
,4 JL-0 cm/s 
o JL.7.3 cm/s 
• JG=10 cm/s 

o o'.os ' o.~s ' o:2s 

Figure 3. Plots of 2~' and a~ (straight line) as a function of 
~G, together with data points by Bernier (1981) and Pauchon 

& Banerjee (1986). 
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In this approximation, we obtain an advection diffusion equation for the void fraction as 

8EL ~EL -- Z0 
Ot + a* Oz 2f ° (2o *+ - a * ) ( 2 * -  - a*)  o2ELC~Z2 

which implies the stability condition 

[191 

2 " -  ~< a* ~< 2 *+ , [20] 

since if the coefficient of the diffusive term is negative the flow will be unstable; i.e. the voids will 
tend to form clumps and coalesce. The kinematic waves predicted with constant interfacial drag 
have velocities slightly above the two characteristic velocities 2"  ±, as indicated in figure 3. The 
experimental measurements actually cluster between the kinematic wave and the faster character- 
istic velocities, which appears to indicate weakly unstable bubbly flow from [19]. However, as 
shown later, turbulence would tend to stabilize the system. 

Interfacial drag as a function of void fraction. Note that the above result is obtained with a 
constant interfacial drag coefficient, which implies no bubble interaction effects. While the 
experimental results of  Ruggles et al. (1986), alluded to previously, support such a description up 
to a relatively high void fraction for the virtual mass type terms, the interface drag terms may be 
more sensitive. To elucidate the situation, we now investigate the form of the interfacial drag 
coefficient that will give neutrally stable kinematic waves. To proceed, neutral stability for the 
kinematic waves is obtained when 

From [15], this implies 

or from [8], 

ao* = 2O* + [21] 

Fro CG0 ELO 
f i  (EG0) - -  2(EL ° _ ~.O* + ) ; [22] 

G,(EGO)=r8 Rg .-1 ELoE~_ 
L3 (UG0 - -  UL0)2J 2(EL0 - -  d-0 * +  ) '  

[23] 

The coefficient in square brackets on the r.h.s, of  [23] is the term that arises naturally from a force 
balance on a single bubble (Ishii & Zuber 1979). The unbracketed term on the far right is the void 
fraction dependency predicted. We can now compare this expression to that of  Ishii & Zuber (1979) 
in their so-called "Newton's  regime". Figure 4 shows agreement up to a void fraction of 0.3. This 
is well beyond the range of  our model as bubble interaction effects would begin to affect the virtual 
mass, void fraction gradient and velocity distribution terms--all  of  which we have assumed to be 
of the highly dilute form. However, on the basis of  the calculations presented later, we expect 
bubble interaction effects to hardly affect the results up to 0% ~ 0.1 and perhaps somewhat beyond. 
Therefore there is a significant range where the analysis is applicable. 

The remarkable result here is the agreement of an essentially empirical drag coefficient result with 
a model which only demands neutral stability of the kinematic waves. Alternatively we may start 
from a good model for drag and determine its consequences. 

A model for the drag coefficient accounting for turbulence in the liquid phase has been developed 
by Lee (1987). The model can be described by a Stokes law based on an apparent turbulent viscosity 
of the fluid. It is expressed as: 

Co = 2 L  R"~p = (uoO - U L ° ) D P "  

R"ep YL 
~7~ = 100 E~ 5 Fr 2.33 ReO.86 StO.3 
YL 

V~=l for R"ep<lo. 
VL 

for Rep > lO ;  
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Figure 4. Comparison of the prediction in this paper with 
Ishii & Zuber's (1979) correlation. 
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Figure 5. Effect of bubble interactions on the characteristic 
speeds. Kinematic wave velocities resulting from the models 

by Ishii & Zuber (1979) and Lee (1987). 

Note  that in this model, the dominant  contribution to the drag is due to the void fraction. Including 
this drag coefficient in our model leads to the following kinematic velocity: 

a* = 0.75 - 1.25EG0. 

Figure 5 shows that in this case kinematic waves should be stable up to a void fraction of  0.4. 

3.3. Effect o f  wall shear stress 

We now go back to the linearized system [14a-c] and include the effect of  wall shear stress: 

&L duL 
t~t  + eLO ~ Z  = 0 [24a] 

and 

At steady state, 

2fio (uo - uL) - ELFro -- 2fwoULoELoUL --f~LEoU20 = O. [24b] 

fio - EL U2Lo f~o -- ELoFr0 = 0. 

The resulting kinematic wave is 

) ao* = (1 - ~ Co0) 1 - ~i0 ULOELOEC,0 • [251 

The wall friction term therefore introduces a small correction to the kinematic wave velocity when 
we compare [25] with [17]. Returning to the definition o f f  andfw in [6]-[8], note that the correction 
is very small if the average bubble radius R ,~ D, the pipe diameter. Except in unusual 
circumstances, the wall friction effect does not change the conclusions of  the previous section. 

3.4. Effect o f  bubble interactions 

Bubble interactions, as they affect the virtual mass coefficient CvM, the phasic pressure difference 
coefficient, ~, and the velocity distribution coefficient k are now investigated. To bound the 
possibilities, consider bubbles in a cell where the influence of  surrounding bubbles is integrated into 
a larger bubble encompassing a single bubble. This approach was used previously by Zuber (1964) 
to determine the virtual mass coefficient only. Although Ruggles et al. (1986) present measurements 
indicating that such a model overestimates interaction effects, nonetheless it is instructive to use 
this model as one extreme of  what is possible. 
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The motion of the fluid bounded by two concentric spheres of radii a and b (a < b) moving at 
velocities uG and UL is given by Milne-Thompson (1968) (assuming the flow is inviscid and 
incompressible) as 

where 

COS0I a3b 3 1 
~b = - 7 -  a3uG - b3UL)r -I- -~-r2 (UG -- UL) , 

C 3 = b 3 _ a 3 E G = . 

[26] 

Knowing the flow field, we can deduce the form mpL i and (u[2). The result for CvM, ¢ and k is 

2E o + 1 1 + Eo 1 --~ 5•GE L 
CvM(Eo)-- 2C-----~' ~(Cc)= 4C-----~' k(Ec)= 52[ [27] 

CvM was reported by Zuber (1964). To our knowledge, the forms of ~(Ec) and k(EG) have not been 
published previously. 

The model resulting from [271 can be written exactly as [10a,b] with the following new form for 
V~ 

E2 (CvM -- ~ -- k E G ) 2 E G E L  --]- CVM ( ~ - ' ~ ) 2  ///~ ' E ( ~ k ) _  ~EL V : + EGEL( ¢ + k -- CVM ) "~ 2E:L ¢ - + ELEG[~EL "f- G • [28] 

The resulting characteristics are shown in figure 5 and compared with the noninteraction model. 
Note that the faster characteristic is not affected up to a void fraction of about 0.1, after which 
there is a rapid deviation. This interaction model predicts instability for Eo > 0.12 but probably 
overestimates the bubble interaction effect, as pointed out previously. Nonetheless the results of 
the analysis presented previously should hold at least for EG < 0.1 and perhaps beyond on the basis 
of the empirical evidence. 

3.5. Qualitative effects of turbulence 
Just as the effects of velocity distributions around a single bubble were considered, we may also 

introduce the effects of turbulence through the velocity fluctuations about the mean. For simplicity, 
an eddy diffusivity model is used to model the Reynolds stress component of the axial velocity 
fluctuations, i.e. 

0UL 
(u[  2) = Dx -~z + kEo(uc - UL) 2, [29] 

where k = 1/5 in dilute bubble mixtures, and DT may be thought of as an axial diffusion coefficient. 
Equation [19] now becomes 

• EGoFT0-] 02EL [30] 
0ELo__.~_ + a , . ~ _  zoEL = [~o (;,+L2f0 --a*)(a*--2*o-)+ao 2f0 J Oz 2 

where 

DT 
fT0 = 

(UG0 -- UL0)Dpipe 

is called the dispersion number (Levenspiel 1968). Clearly turbulence tends to stabilize the flow. 
We see that the coefficient of the diffusive term can remain positive even when a~' > 2" + because 
of the turbulent term. This may explain experimental values of void propagation velocity slightly 
above 2 *+ . 

4. SUMMARY 

It is shown that by accounting for the virtual mass force (given by [4]), phasic pressure difference 
(given by [3]) and liquid velocity distribution around a bubble (given by [5]), and neglecting bubble 
interactions, the bubble flow model based on the volume/ensemble- (or time-) averaged formulation 
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has real characteristics up to a void fraction of ~ 0.4. Clearly at the higher void fractions the model 
is inaccurate due to bubble interactions. 

The characteristic velocities, which represent the fastest and slowest propagating speeds in the 
system, are of the form 

2±=UL"J-(UG--UL)f+(f-G) with 0~<f±(eo)~<l and f + ( 0 ) = l ,  f - ( 0 ) = 0 .  

The Riemann invariants were determined and it was shown that the void fraction is approxi- 
mately conserved along ). +. The supports the interpretation of the experimental results on void 
fraction in Part I in terms of the characteristic velocities. 

On the other hand, the void propagation velocity is also expected to be that of the kinematic 
waves. To clarify the situation the velocity of kinematic waves and their stability have been 
examined. Using thc simplest ihterfacial drag correlation with a constant coefficient, the linear 
kinematic wave velocity is found to lie slightly outside the region encompassed by the faster and 
slower characteristics. This implies that they would be weakly amplified, as demonstrated by our 
analysis, though axial diffusion due to turbulence would tend to somewhat stabilize the situation. 
In fact, the eXperimental data on void propagation are seen to be between the faster characteristic 
velocity and the kinematic wave velocity derived with a constant drag coefficient. It was shown 
that inclusion of wall friction has negligible effect on these results. 

If it is assumed that the kinematic waves are neutrally stable, i.e. their velocity is the same as 
the faster characteristic, then the functional dependence of the interfacial friction factor on the void 
fraction can be deduced. This relation agrees with the correlations proposed by Ishii & Zuber (1979) 
up to a void fraction of 0.3, but in fact the analysis can only be expected to be reasonable up to 
Ec ~ 0.1 to 0.15. This is still remarkable because no empirical input is required to derive the result 
except to assume that the inviscid terms, e.g. virtual mass term can be written in the dilute mixture 
limit. Indeed, the work of Ruggles et al. (1986) indicates that this assumption may not be as bad 
as we thought previously. 

Nonetheless to clarify the effect of interactions, a bubble-in-cell model similar to Zuber's was 
used to calculate the characteristics. Though this model may significantly overestimate the effect 
of bubble interaction, still it was shown that the faster characteristic is unaffected up to a void 
fraction of 0.1. The results presented are therefore likely to be correct up to this value and probably 
beyond on the basis of experimental data. Furthermore, the effect of turbulence is shown to 
stabilize the void propagation equation by adding a diffusive component. Quantitative evaluation 
will not be attempted until more is understood about the axial diffusion coefficient. 
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